ОЭММПУАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Алгоритмы рандомизированного машинного обучения для прогнозирования эволюции площади термокарстовых озер в зонах вечной мерзлоты

Код статьи
10.31857/S0005231023010051-1
DOI
10.31857/S0005231023010051
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
98-120
Аннотация
Рандомизированное машинное обучение ориентировано на задачи, сопровождаемые значительной неопределенностью в данных и моделях. Алгоритмы машинного обучения формулируются в терминах функциональной задачи энтропийно-линейного программирования. Рассматривается методика их адаптации к задачам прогнозирования на примере временной эволюции площади термокарстовых озер в зонах вечной мерзлоты, которые являются генераторами метана - одного из парниковых газов, влияющих на изменения климата. Предлагаются процедуры рандомизированного машинного обучения, использующие модели динамической регрессии со случайными параметрами, и ретроспективные данные климатических параметров и дистанционного зондирования земной поверхности. Развивается алгоритм рандомизированного машинного обучения, позволяющий вычислять оценки функций плотности распределения вероятностей параметров модели и измерительных шумов. Рандомизированное прогнозирование реализовано в виде алгоритмов трансформации оптимальных распределений в соответствующие им случайные последовательности (алгоритмы сэмплирования). Развиваемые процедуры и технологии рандомизированного прогнозирования применены для обучения, тестирования и прогнозирования эволюции площади термокарстовых озер Западной Сибири.
Ключевые слова
термокарстовые озера дистанционное зондирование информационная энтропия балансовые уравнения динамическая регрессия оптимизация ляпуновская задача сэмплирование рандомизированное прогнозирование рандомизированное машинное обучение
Дата публикации
15.01.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Vapnik V.N. Statistical Learning Theory. John Willey & Sons, 1998.
  2. 2. Bishop C. Pattern Recognition and Machine Learning. N.Y. Springer, 2007.
  3. 3. Friedman J., Hastie T., Tibshirani R. The elements of statistical learning. Volume 1, Springer series in statistics, Berlin. Springer, 2009.
  4. 4. Popkov Yu.S., Dubnov Yu.A., Popkov A.Yu. Randomized Machine Learning: Statement, Solution, Applications // Proc. IEEE Int. Conf. on Intelligent Systems. 2016. P. 27-39.
  5. 5. Zuidhoff F.S., Kolstrup E. Changes in palsa distribution in relation to climate change in Laivadalen, Northern Sweden, espesially 1960-1997 // Permafrost and Periglacial Processes. 2000. V. 11. P. 55-69.
  6. 6. Kirpotin S., Polishchuk Y., Bruksina N. Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting // Int. J. Environmental Studies. 2009. V. 66. No. 4. P. 423-431.
  7. 7. Karlson J.M., Lyon S.W., Destouni G. Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia // Remote Sensing. 2014. No. 6. P. 621-636.
  8. 8. Bryksina N.A., Polishchuk Yu.M. Analysis of changes in the number of thermokarst lakes in permafrost of Western Siberia on the basis of satellite images // Cryosphere of Earth. 2015. V. 19. No. 2. P. 114-120.
  9. 9. Liu Q., Rowe M.D., Anderson E.J., Stow C.A., Stumpf R.P. Probabilistic forecast of microcystin toxin using satellite remote sensing, in situ observation and numerical modeling // Environment Modelling and Software. 2020. V. 128. P. 104705.
  10. 10. Vidyasagar M. Statistical Learning Theory and Randomized Algorithms for Control // IEEE Control System Magazine. 1998. V. 1. No. 17. P. 69-88.
  11. 11. Граничин О.Н., Поляк Б.Т. Рандомизированные алгоритмы оценивания и оптимизации при почти произвольных помехах. М.: Наука, 2002.
  12. 12. Biondo A.E., Pluchino A., Rapisarda A., Helbing D. Are random traiding strategies more successful than tachnical ones? // PLoS ONE. 2013. V. 6. No. 7. P. e68344.
  13. 13. Lutz W., Sandersen S., Scherbov S. The end of world population growth // Nature. 2001. V. 412. No. 6846. P. 543-545.
  14. 14. Цирлин А.М. Методы усредненной оптимизации и их применение. М.: Физматлит, 1997.
  15. 15. Shannon C.Communication Theory of Secrecy Systems // Bell System Technical Journal. 1949. V. 28. No. 4. P. 656-715.
  16. 16. Jaynes E.T. Information Theory and Statistical Mechanics // Physics Review. 1957. V. 106. P. 620-630.
  17. 17. Jaynes E.T. Papers on probability, statistics and statistical physics. Dordrecht. Kluwer Academic Publisher, 1989.
  18. 18. Jaynes E.T. Probability Theory. The logic and science. Cambrige University Press, 2003.
  19. 19. Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Рандомизированное машинное обучение при ограниченных объемах данных. М.: УРСС, 2019.
  20. 20. Popkov Y., Popkov A. New Method of Entropy-Robust Estimation for Ramdomized Models under Limited Data // Entropy. 2014. V. 16. P. 675-698.
  21. 21. Иоффе А.Д., Тихомиров В.М. Теория экстремальных задач. М.: Наука, 1984.
  22. 22. Darkhovsky B.S., Popkov Y.S., Popkov A.Y., Aliev A.S. A Method of Generating Random Vectors with a Given Probability Density Function // Autom. Remote Control. 2018. V. 79. No. 9. P. 1569-1581. https://doi.org/10.1134/S0005117918090035
  23. 23. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей. М.: Финансы и статистика, 1985.
  24. 24. Электронный ресурс: https://cloud.uriit.ru/index.php/s/0DOrxL9RmGqXsV0. Статья представлена к публикации членом редколлегии А.Н. Соболевским.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека