RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Iterative Learning Control of Stochastic Multi-Agent Systems with Variable Reference Trajectory and Topology

PII
10.31857/S0005231023060053-1
DOI
10.31857/S0005231023060053
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
79-99
Abstract
In modern smart manufacturing, robots are often connected via a network, and their task can change according to a predetermined program. Iterative learning control (ILC) is widely used for robots executing high-precision operations. Under network conditions, the efficiency of ILC algorithms may decrease if the program is restructured. In particular, the learning error may temporarily increase to an unacceptable value when changing the reference trajectory. This paper considers a networked system with the following features: the reference trajectory and parameters change between passes according to a known program, agents are subjected to random disturbances, and measurements are carried out with noise. In addition, the network topology changes due to the disconnection of some agents from the network and the connection of new agents to the network according to a given program. A distributed ILC design method is proposed based on vector Lyapunov functions for repetitive processes in combination with Kalman filtering. This method ensures the convergence of the learning error and reduces its increase caused by changes in the reference trajectory and network topology. The effectiveness of the proposed method is confirmed by an example.
Keywords
управление с итеративным обучением мультиагентная система изменяемая топология случайные возмущения повторяющиеся процессы устойчивость стабилизация векторная функция Ляпунова линейные матричные неравенства
Date of publication
15.06.2023
Year of publication
2023
Number of purchasers
0
Views
10

References

  1. 1. Saez M.A., Maturana F.P., Barton K., Tilbury D.M. Context-sensitive modeling and analysis of cyber-physical manufacturing systems for anomaly detection and diagnosis // IEEE Transaction on Automation Science and Engineering. 2020. V. 17. No. 1. P. 29-40.
  2. 2. Balta E.C., Tilbury D.M., Barton K. Switch Based Iterative Learning Control for Tracking Iteration Varying References // IFAC PapersOnLine. 2020. V 53. No. 2. P. 1493-1498.
  3. 3. Tsypkin Ya.Z. Adaptation and Learning in Automatic Systems. New York: Academic Press, 1971.
  4. 4. Arimoto S., Kawamura S., Miyazaki F. Bettering operation of robots by learning // Journal of Robotic Systems. 1984. V. 1. No. 2. P. 123-140.
  5. 5. Bristow D.A., Tharayil M., Alleyne A. A survey of iterative learning control // IEEE Control Systems Magazine. 2006. V. 26. No. 3. P. 96-114.
  6. 6. Ahn H.S., Chen Y.Q., Moore K.L. Iterative learning control: Brief survey and categorization // IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews. 2007. V. 37. No. 6. P. 1099-1121.
  7. 7. Pakshin P., Emelianova J., Emelianov M. Iterative learning control of stochastic linear systems under switching of the reference trajectory and parameters // Proccedings of the 29th Mediterranean Conference on Control and Automation. 2021. P. 1311-1316. 2021. Bari, Puglia, Italy.
  8. 8. Pakshin P., Emelianova J., Rogers E., Galkowski K. Iterative learning control of stochastic linear systems with reference trajectory switching // Proceedings of the 60th IEEE Conference on Decision and Control. 2021. P. 6565-6570.
  9. 9. Ahn H.S., Chen Y.Q. Iterative learning control for multi-agent formation // In Proc. ICROS-SICE Int. Joint Conf. 2009. P. 3111-3116.
  10. 10. Liu Q., Bristow D.A. An iteration-domain lter for controlling transient growth in iterative learning control // Proc. 2010 Amer. Control Conf. 2010. P. 2039-2044.
  11. 11. Liu Y., Jia Y. An iterative learning approach to formation control of multi-agent systems // Systems & Control Letters. 2012. V. 61. P. 148-154.
  12. 12. Yang S., Xu J.X., Huang D., Tan Y. Optimal iterative learning control design for multi-agent systems consensus tracking // Systems & Control Letters. 2014. V. 69 P. 80-89.
  13. 13. Li J., Li J. Adaptive iterative learning control for coordination of second-order multi-agent systems // Int. J. Robust Nonlinear Control. 2014. V. 24. P. 3282-3299.
  14. 14. Meng D., Du W., Jia Y. Data-driven consensus control for networked agents: an iterative learning control-motivated approach // IET Control Theory & Applications. 2015. V. 9. P. 2084-2096.
  15. 15. Yu X., Hou Z., Polycarpou M.M. Distributed Data-Driven Iterative Learning Consensus Tracking for Nonlinear Discrete-Time Multiagent Systems // IEEE Transactions on Automatic Control. 2022. V. 67. No. 7. P. 3670-3677.
  16. 16. Hock A., Schoellig A. Distributed iterative learning control for multi-agent systems // Autonomous Robots. 2019. V. 43. P. 1989-2010.
  17. 17. Pakshin P.V., Emelianova J.P., Emelianov M.A. (2018). Iterative learning control design for multiagent systems based on 2D models // Automation and Remote Control. 2018. V. 79. No. 6. P. 1040-1056.
  18. 18. Pakshin P.V., Koposov A.S., Emelianova J.P. Iterative learning control of a multiagent system under random perturbations // Automation and Remote Control, (2020). 81(3), 483-502.
  19. 19. Ahn H.S., Moore K.L., Chen Y.Q. Iterative Learning Control. Robustness and Monotonic Convergence for Interval Systems. Lecture Notes in Control and Information Sciences. Springer-Verlag: London, 2007.
  20. 20. Hock A., Schoellig A. Distributed iterative learning control for a team of quad-rotors // Proceedings of the 55th IEEE Conference on Decision and Control. 2016. P. 4640-4646.
  21. 21. Sun S., Endo T., Matsuno F. Iterative learning control based robust distributed algorithm for non-holonomic mobile robots formation // IEEE Access. 2018. V. 6. P. 61904-61917.
  22. 22. Koposov A., Emelianova J., Pakshin P. Iterative learning control of multi-agent systems under changing network con guration // IFAC PapersOnLine, 2021. V. 54. No. 20. P. 669-674.
  23. 23. Koposov A., Emelianova J., Pakshin P. Iterative learning control of multi-agent systems under changing reference trajectoty // IFAC PapersOnLine, 2022. V. 55. No. 12. P. 759-764.
  24. 24. Pakshin P., Emelianova J. Iterative learning control design for discrete-time stochastic switched systems // Autom. Remote Control. 2020. V. 81. No. 11. P. 2011-2025.
  25. 25. Apkarian J., Karam P., Levis M. Workbook on Flexible Link Experiment for MatlabR/Simulink Users. Quanser, 2011.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library