RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Probabilistic Assessment of a Pentapeptide Composition Influence on Its Stability

PII
10.31857/S0005231023120048-1
DOI
10.31857/S0005231023120048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 12
Pages
38-48
Abstract
The influence of the arrangement of amino acid residues in a pentapeptide on its stability is being studied. A forecast of pentapeptide stability is made using the gradient boosting method, which allows one to evaluate the influence of each feature on the stability of the pentapeptide. Combinations of amino acid arrangements in the pentapeptide have been identified that make a significant contribution to its stability. It has been shown that the use of such combinations reduces the amount of data required to obtain a reliable prediction of pentapeptide stability.
Keywords
аминокислотный остаток пентапептид градиентный бустинг предсказание достаточность информации
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
11

References

  1. 1. Senior A.W., Evans R., Jumper J. et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706-710.
  2. 2. Pereira J., Simpkin A.J., Hartmann M.D. et al. High accuracy protein structure prediction in CASP14 // Proteins Structure Function and Bioinformatics. 2021. V. 89. No. 12. P. 1687-1699. https://doi.org/10.1002/prot.26171
  3. 3. Nekrasov A.N., Kozmin Yu.P., Kozyrev S.V. et al. Hierarchical structure of protein sequence // Int. J. Mol. Sci. 2021. V. 22. No. 15. 8339. https://doi.org/10.3390/ijms22158339
  4. 4. Anashkina A.A., Nekrasov A.N., Alekseeva L.G. et al. A minimum set of stable blocks for rational design of polypeptide chains // Biochimie. 2019. V. 160. P. 88-92.
  5. 5. Ke G., Meng Q., Finley T., Wang T. et al. A Highly Efficient Gradient Boosting Decision Tree // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 3149-3157.
  6. 6. Bergstra J., Yamins D., Cox D.D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures // Proc. of the 30th International Conference on Machine Learning (ICML). 2013. P. 115-123.
  7. 7. Lundberg S.M., Lee S.I. A unified approach to interpreting model predictions // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 4765-4774.
  8. 8. Mikhalskii A.I., Petrov I.V., Tsurko V.V., Anashkina A.A. et al. Application of mutual information estimation for prediction the structural stability of pentapeptides // Rus. J. Numer. Anal. Math. Model. 2020. V. 35. No. 5. P. 263-271.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library