ОЭММПУАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Вероятностная оценка влияния состава пентапептида на его устойчивость

Код статьи
10.31857/S0005231023120048-1
DOI
10.31857/S0005231023120048
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 12
Страницы
38-48
Аннотация
Изучается влияние расположения аминокислотных остатков в пентапептиде на его устойчивость. Cтроится прогноз устойчивости пентапептида с помощью метода градиентного бустинга, позволяющего оценить влияние каждого признака на стабильность пентапептида. Выявлены комбинации расположения аминокислот в пентапептиде, вносящие существенный вклад в его стабильность. Показано, что использование таких комбинаций позволяет сократить количество данных, необходимых для получения достоверного прогноза стабильности пентапептида.
Ключевые слова
аминокислотный остаток пентапептид градиентный бустинг предсказание достаточность информации
Дата публикации
15.12.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
9

Библиография

  1. 1. Senior A.W., Evans R., Jumper J. et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706-710.
  2. 2. Pereira J., Simpkin A.J., Hartmann M.D. et al. High accuracy protein structure prediction in CASP14 // Proteins Structure Function and Bioinformatics. 2021. V. 89. No. 12. P. 1687-1699. https://doi.org/10.1002/prot.26171
  3. 3. Nekrasov A.N., Kozmin Yu.P., Kozyrev S.V. et al. Hierarchical structure of protein sequence // Int. J. Mol. Sci. 2021. V. 22. No. 15. 8339. https://doi.org/10.3390/ijms22158339
  4. 4. Anashkina A.A., Nekrasov A.N., Alekseeva L.G. et al. A minimum set of stable blocks for rational design of polypeptide chains // Biochimie. 2019. V. 160. P. 88-92.
  5. 5. Ke G., Meng Q., Finley T., Wang T. et al. A Highly Efficient Gradient Boosting Decision Tree // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 3149-3157.
  6. 6. Bergstra J., Yamins D., Cox D.D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures // Proc. of the 30th International Conference on Machine Learning (ICML). 2013. P. 115-123.
  7. 7. Lundberg S.M., Lee S.I. A unified approach to interpreting model predictions // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 4765-4774.
  8. 8. Mikhalskii A.I., Petrov I.V., Tsurko V.V., Anashkina A.A. et al. Application of mutual information estimation for prediction the structural stability of pentapeptides // Rus. J. Numer. Anal. Math. Model. 2020. V. 35. No. 5. P. 263-271.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека