RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

An Interval Observer-Based Method to Diagnose Discrete-Time Systems

PII
10.31857/S0005231023120115-1
DOI
10.31857/S0005231023120115
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 12
Pages
133-145
Abstract
This paper proposes a method for diagnosing linear dynamic systems described by discrete-time models with exogenous disturbances based on interval observers. Formulas are derived to construct an interval observer producing two values of the residual as follows: if zero is between these values, then the system has no faults to be detected by the observer. The case where zero does not belong to the interval between these values is qualified as the occurrence of a fault. The theoretical results are illustrated by an example.
Keywords
линейные системы дискретные модели интервальные наблюдатели диагностирование дефекты
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
12

References

  1. 1. Жирабок А.Н., Зуев А.В., Ким Чхун Ир. Метод построения интервальных наблюдателей для стационарных линейных систем // Известия РАН. Теория и системы управления. 2022. № 4. С. 22-32.
  2. 2. Жирабок А.Н., Зуев А.В., Филаретов В.Ф., Шумский А.Е., Ким Чхун Ир. Каноническая форма Жордана в задачах диагностирования и оценивания // АиТ. 2022. № 9. С. 49-67.
  3. 3. Ефимов Д.В., Раисси Т. Построение интервальных наблюдателей для динамических систем с неопределенностями // АиТ. 2016. № 2. С. 5-49.
  4. 4. Khan A., Xie W., Zhang L., Liu L. Design and applications of interval observers for uncertain dynamical systems // IET Circuits Devices Syst. 2020. V. 14. P. 721-740.
  5. 5. Кремлев А.С., Чеботарев С.Г. Синтез интервального наблюдателя для линейной системы с переменными параметрами // Изв. вузов. Приборостроение. 2013. Т. 56. № 4. C. 42-46.
  6. 6. Efimov D., Raissi T., Perruquetti W., Zolghadri A. Estimation and control of discrete-time LPV systems using interval observers // 52nd IEEE Conf. On Decision and Control. Florence, Italy. 2013. P. 5036-5041.
  7. 7. Chebotarev S., Efimov D., Raissi T., Zolghadri A. Interval observers for continuoustime LPV systems with L1/L2 performance // Automatica. 2015. V. 51. P. 82-89.
  8. 8. Mazenc F., Bernard O. Asymptotically stable interval observers for planar systems with complex poles // IEEE Trans. Automatic Control. 2010. V. 55. No. 2. P. 523-527.
  9. 9. Zheng G., Efimov D., Perruquetti W. Interval state estimation for uncertain nonlinear systems // IFAC Nolcos 2013. Toulouse, France, 2013.
  10. 10. Zhang K., Jiang B., Yan X., Edwards C. Interval sliding mode based fault accommodation for non-minimal phase LPV systems with online control application // Int. J. Control. 2019. https://doi.org/10.1080/00207179.2019.1687932
  11. 11. Kolesov N., Gruzlikov A., Lukoyanov E. Using fuzzy interacting observers for fault diagnosis in systems with parametric uncertainty // Proc. XII-th Inter. Symp. Intelligent Systems, INTELS'16, 5-7 October 2016, Moscow, Russia. P. 499-504.
  12. 12. Zhang Z., Yang G. Fault detection for discretetime LPV systems using interval observers // Int. J. Syst. Sci. 2017. https://doi.org/10.1080/00207721.2017.1363926
  13. 13. Zhang Z., Yang G. Event-triggered fault detection for a class of discrete-time linear systems using interval observers // ISA Transactions. 2017. https://doi.org/10.1016/j.isatra.2016.11.016
  14. 14. Zhang Z., Yang G. Interval observer-based fault isolation for discrete-time fuzzy interconnected systems with unknown interconnections // IEEE Trans. Cybernetics. 2017. https://doi.org/10.1109/TCYB.2017.2707462
  15. 15. Yi Z., Xie W., Khan A., Xu B. Fault detection and diagnosis for a class of linear time-varying discrete-time uncertain systems using interval observers // Proc. 39th Chinese Control Conf., July 27-29, 2020, Shenyang, China. P. 4124-4128.
  16. 16. Rotondo D., Fernandez-Cantia R., Tornil-Sina S., Blesa J., Puig V. Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach // Int. J. Hydrogen Energy. 2015. P. 2875-2886.
  17. 17. Saijai J., Ding S., Abdo A., Shen B., Damlakhi W. Threshold computation for fault detection in linear discrete-time Markov jump systems // Int. J. Adapt. Control Signal Process. 2014. Vol. 28. P. 1106-1127.
  18. 18. Шумский А.Е., Жирабок А.Н. Принятие решений при диагностировании нелинейных динамических систем непараметрическим методом // АиТ. 2021. № 2. С. 111-131.
  19. 19. Жирабок А.Н., Шумский А.Е., Соляник С.П., Суворов А.Ю. Метод построения нелинейных робастных диагностических наблюдателей // АиТ. 2017. № 9. С. 34-48.
  20. 20. Low X., Willsky A., Verghese G. Optimally robust redundancy relations for failure detection in uncertain systems // Automatica. 1996. Vol. 22. P. 333-344.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library