RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Search for a Suboptimal Solution to the Dynamic Traveling Salesman Problem by the Monte Carlo Method

PII
10.31857/S0005231024020065-1
DOI
10.31857/S0005231024020065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
103-119
Abstract
Рассматривается задача составления плана обхода прямолинейно движущихся в одну точку целей для простых движений перехватчика (коммивояжера). Предлагаются новый критерий задачи на основе начального разбиения области возможного перехвата, а также алгоритм поиска субоптимального плана обхода на основе построения дерева поиска решения методом Монте-Карло. Разработана численная реализация алгоритма, проведено моделирование и статистически проанализированы полученные планы обхода целей. Ключевые слова: динамическая задача коммивояжера, перехват в простых движениях, комбинаторная оптимизация, алгоритм Монте-Карло.
Keywords
Date of publication
15.02.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Галяев А.А., Яхно В.П., Берлин Л.М., Лысенко П.В., Бузиков М.Э. Оптимизация плана перехвата прямолинейно движущихся целей // А и Т. 2023. № 10. С. 18–36.
  2. 2. Сихарулидзе Г.Г. Об одном обобщении задачи коммивояжера. I // А и Т. 1971. № 8 С. 116–123.
  3. 3. Сихарулидзе Г.Г. Об одном обобщении задачи коммивояжера. II // А и Т. 1971. № 10. С. 142–147.
  4. 4. Picard J.C., Queyranne M. The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling // Oper. Res. 1978. V. 26. No. 1. P. 86–110. DOI: 10.1287/opre.26.1.86
  5. 5. Helvig C.S., Robins G., Zelikovsky A. The moving-target traveling salesman problem // J. Algorithm. Comput. Technol. 2003. V. 49. No. 1. P. 153–174. https://doi.org/10.1016/S0196-6774 (03)00075-0
  6. 6. Garey M.R., Johnson D.S. Computers and intractability: A guide to the theory of NP-completeness. San Francisco, Calif.: W. H. Freeman & Co., 1979.
  7. 7. Li C., Yang M., Kang L. A New Approach to Solving Dynamic Traveling Salesman Problems. In: Wang, TD., et al. Simulated Evolution and Learning // Lecture Notes Comput. Sci. 2006. V. 4247. Springer, Berlin, Heidelber.
  8. 8. Archetti C., Feillet D., Mor A., Speranza M.G. Dynamic traveling salesman problem with stochastic release dates // Eur. J. Oper. 2020. V. 280. I. 3. P. 832–844. ISSN 0377-2217
  9. 9. Silver D., Huang A., Maddison C. et al Mastering the game of Go with deep neural networks and tree search // Nature. 28 January 2016. 529 (7587): P. 484–489. https://doi.org/10.1038/nature16961.
  10. 10. Schadd M.P.D., Winands M.H.M., van den Herik H.J., Chaslot G.M.J.B., Uiterwijk J.W.H.M. (2008). Single-Player Monte-Carlo Tree Search // Computers and Games. CG 2008. Lecture Notes in Computer Science, vol 5131. Springer, Berlin, Heidelberg.
  11. 11. Mattia Crippa, Pier Luca Lanzi, Fabio Marocchi. An analysis of Single-Player Monte Carlo Tree Search performance in Sokoban // Expert Syst. Appl. 15 April 2022. V. 192. P. 2–3.
  12. 12. Cotarelo A., Vicente G., Edward Rolando N., Cristian G., Alberto G., Jerry Ch. Improving Monte Carlo Tree Search with Artificial Neural Networks without Heuristics. Appl. Sci. 2021. V. 11, No. 5. 2056. https://doi.org/10.3390/app11052056
  13. 13. Marco K. Beyond Games: A Systematic Review of Neural Monte Carlo Tree Search Applications // arXiv:2303.08060. https://doi.org/10.48550
  14. 14. Auer P., Cesa-Bianchi N., Fischer P. Finite-time Analysis of the Multiarmed Bandit Problem // Machine Learning. 2002. V. 47. P. 235–256. https://doi.org/10.1023/A:1013689704352
  15. 15. Kocsis L., Szepesvari C. Bandit Based Monte-Carlo Planning. Furnkranz J., Scheffer T., Spiliopoulou M. (eds) // Machine Learning: ECML 2006. ECML 2006. Lecture Notes Comput. Sci. V. 4212. Springer, Berlin, Heidelberg.
  16. 16. Swiechowski M., Godlewski K., Sawicki B. et al. Monte Carlo Tree Search: a review of recent modifications and applications // Artif. Intell. Rev. 2023 V. 56. P. 2497–2562. https://doi.org/10.1007/s10462-022-10228-y
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library