- Код статьи
- 10.31857/S0005231025050049-1
- DOI
- 10.31857/S0005231025050049
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 5
- Страницы
- 61-80
- Аннотация
- Программирование является одним из важнейших навыков XXI в. Однако для многих учащихся обучение программированию является довольно сложным процессом. Вт аких случаях важно поддерживать интерес и вовлеченность студентов в процесс обучения. Считается, что цифровые игры могут решить эту проблему. Одним из видов игр, которые хорошо подходят для сферы компьютерных наук, являются головоломки, которые направлены в том числе и на развитие когнитивных способностей. Целью статьи является разработка моделей, алгоритма работы и структуры игрового чат-бота с искусственным интеллектом для обучения программированию с помощью заданий-головоломок по типу словесной игры Wordle. Wordle выбрана по причине ее всемирной популярности и адаптирована в виде игрового чат-бота для использования в процессе обучения программированию. Искусственный интеллект в чат-боте необходим для контроля целесообразности и подходящего времени его использования, а также адаптивного формирования уровня сложности заданий-головоломок. На основе собранных в результате использования неинтеллектуального игрового чат-бота данных были построены регрессионные модели влияния показателей студентов на уровень интереса и сложности предлагаемых игровым чат-ботом заданий-головоломок. Разработанные модели легли в основу алгоритма работы и структуры игрового чат-бота с искусственным интеллектом. При использовании интеллектуального игрового чат-бота есть возможность дообучать модели и корректировать полученные ранее значения коэффициентов.
- Ключевые слова
- игровой чат-бот обучение программированию искусственный интеллект
- Дата публикации
- 01.05.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 14
Библиография
- 1. Mayer R.E. Computer Games in Education // Ann. Rev. Psychol. 2019. V. 70. P. 531–549. https://doi.org/10.1146/ANNUREV-PSYCH-010418-102744
- 2. Zhan Z., He L., Tong Y., et. al. The effectiveness of gamification in programming education: Evidence from a meta-analysis // Comput. Educat.: Artific. Intelligence. 2022. V. 3. 100096 p. https://doi.org/10.1016/J.CAEAI.2022.100096
- 3. Nouchi R., Taki Y., Takeuchi H., et. al. Brain Training Game Boosts Executive Functions, Working Memory and Processing Speed in the Young Adults: A Randomized Controlled Trial // PLoS One. 2013. V. 8. e55518 p. https://doi.org/10.1371/JOURNAL.PONE.0055518
- 4. Huang V., Young M., Fiocco A.J. The Association Between Video Game Play and Cognitive Function: Does Gaming Platform Matter? // Cyberpsychol. Behav. Soc. Netw. 2017. V. 20. P. 689–694. https://doi.org/10.1089/CYBER.2017.0241
- 5. Selamat S.S., Nasir M.K., Adnan N.H. Investigation of Computational Thinking Skills through Instructional Techniques, Games and Programming Tools // Int. J. Learn. Teach. Educ. Res. 2024. V. 23. No. 10. P. 435–452. https://doi.org/10.26803/ijlter.23.10.21
- 6. Parsons D., Haden P. Parson’s Programming Puzzles: A Fun and Effective Learning Tool for First Programming Courses // Proceedings of the 8th Australasian Conference on Computing Education. Australian Computer Society, Inc. 2006. V. 52. P. 157–163.
- 7. Murphy M., Spillane K., Cully J., et. al. Can Word Puzzles be Tailored to Improve Different Dimensions of Verbal Fluency? A Report of an Intervention Study // J. Psych. Elsevier Publ. 2016. V. 150. P. 743–754. https://doi.org/10.1080/00223980.2016.1182887
- 8. Friedlander K.J., Fine P.A. Fluid Intelligence is Key to Successful Cryptic Crossword Solving // J. Expert. 2020. V. 3. P. 101–132.
- 9. Juricic V., Radoˇsevic M. Puzzle-like programming languages in teaching programming // 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019 – Proceedings. Institute of Electrical and Electronics Engineers Inc. 2019. P. 542–546. hoi.org/10.239ttps://d19/MIPRO.2019.8757192
- 10. Fakhoury S., Ma Y., Arnaoudova V., Adesope O. The Effect of Poor Source Code Lexicon and Readability on Developers’ Cognitive Load // 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC). Gothenburg, Sweden. 2018. P. 286–28610.
- 11. Wassila D., Tahar B. Using serious game to simplify algorithm learning // International Conference on Education and e-Learning Innovations, ICEELI 2012. 2012. P. 1–5. https://doi.org/10.1109/ICEELI.2012.6360569
- 12. Liu Y., Tan J., Yang Z., et. al. Application Study of Collaborative Multi-Model in Wordle Game // 5th International Conference on Machine Learning and Computer Application (ICMLCA). 2024. P. 591–596.
- 13. Zhang Z., Wang S., Sun D. A Study of Wordle Games Based on Mathematical Models // IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT). 2024. P. 813–817.
- 14. Wang S., Zhou G., Zhang Z., et. al. Exploring wordle: a data-driven analysis of gameplay dynamics, mathematical modeling, and educational implications // Proc. SPIE 13219, Fourth International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2024). 2024. 132190F. https://doi.org/10.1117/12.3036932
- 15. Cunningham-Nelson S., Boles W., Trouton L., et. al. A review of chatbots in education: Practical steps forward // 30th Annual Conference for the Australasian Association for Engineering Education (AAEE 2019): Educators Becoming Agents of Change: Innovate, Integrate, Motivate. Engineers Australia, Brisbane, Queensland. 2019. P. 299–306.
- 16. Setiawan H., Phillipson S. The effectiveness of Game-Based Science Learning (GBSL) to improve students’ academic achievement: A meta-analysis of current research from 2010 to 2017 // REID (Research and Evaluation in Education). 2019. V. 5. P. 152–168. https://doi.org/10.21831/REID.V5I2.28073
- 17. Karako,c B., Eryılmaz K., Turan ¨Ozpolat E., et. al. The Effect of GameBased Learning on Student Achievement: A Meta-Analysis Study // Technology, Knowledge and Learning. 2020. V. 27. P. 207–222. https://doi.org/10.1007/S10758-020-09471-5
- 18. Connolly T.M., Boyle E.A., MacArthur E., et. al. A systematic literature review of empirical evidence on computer games and serious games // Comput. Educ. 2012. V. 59. P. 661–686. https://doi.org/10.1016/J.COMPEDU.2012.03.004
- 19. Vahldick A., Mendes A.J., Marcelino M.J. A review of games designed to improve introductory computer programming competencies // Proceedings – Frontiers in Education Conference, FIE. 2014. P. 1–7. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/FIE.2014.7044114
- 20. Miljanovic M.A., Bradbury J.S. A review of serious games for programming // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. V. 11243 LNCS. P. 204–216. https://doi.org/10.1007/978-3-030-02762-9_21/COVER
- 21. Giannakoulas A., Xinogalos S. A Review of Educational Games for Teaching Programming to Primary School Students // Handbook of Research on Tools for Teaching Computational Thinking in P-12 Education. 2020. P. 1–30. https://doi.org/10.4018/978-1-7998-4576-8.ch001
- 22. Falkner N., Sooriamurthi R., Michalewicz Z. Puzzle-based learning for engineering and computer science // Computer (Long Beach Calif). 2010. V. 43. P. 20–28. https://doi.org/10.1109/MC.2010.113
- 23. Khamparia A., Pandey B. Effects of visual map embedded approach on students learning performance using Briggs-Myers learning style in word puzzle gaming course // Comput. Elect. Engin. 2018. V. 66. P. 531–540. https://doi.org/10.1016/J.COMPELECENG.2017.12.041
- 24. Toma M., Halpern D.F., Berger D.E. Cognitive Abilities of Elite Nationally Ranked SCRABBLE and Crossword Experts // Appl. Cogn. Psychol. 2014. V. 28. P. 727–737. https://doi.org/10.1002/ACP.3059
- 25. Hambrick D.Z., Salthouse T.A., Meinz E.J. Predictors of crossword puzzle proficiency and moderators of age-cognition relations // J. Exp. Psychol. Gen. 1999. V. 128. P. 131–164. https://doi.org/10.1037/0096-3445.128.2.131
- 26. Makasi T., Nili A., Desouza K.C., et. al. A Typology of Chatbots in Public Service Delivery // IEEE Softw. 2022. V. 39. P. 58–66. https://doi.org/10.1109/MS.2021.3073674
- 27. Marikyan D., Papagiannidis S., Rana O.F., et. al. “Alexa, let’s talk about my productivity”: The impact of digital assistants on work productivity // J. Bus. Res. 2022. V. 142. P. 572–584. https://doi.org/10.1016/J.JBUSRES.2022.01.015
- 28. Kimani E., Rowan K., McDuff D., et. al. A Conversational Agent in Support of Productivity and Wellbeing at Work // 8th International Conference on Affective Computing and Intelligent Interaction, ACII 2019. 2019. P. 332–338. https://doi.org/10.1109/ACII.2019.8925488
- 29. Gkinko L., Elbanna A. Hope, tolerance and empathy: employees’ emotions when using an AI-enabled chatbot in a digitalised workplace // Information Technology and People. 2022. V. 35. P. 1714–1743. https://doi.org/10.1108/ITP-04-2021-0328/FULL/PDF
- 30. Bavaresco R., Silveira D., Reis E., et. al. Conversational agents in business: A systematic literature review and future research directions // Comput. Sci. Rev. 2020. V. 36. 100239 p. https://doi.org/10.1016/J.COSREV.2020.100239
- 31. Brandtzaeg P.B., Følstad A. Why people use chatbots // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2017. V. 10673 LNCS. P. 377–392. https://doi.org/10.1007/978-3-319-70284-1_30
- 32. Fotheringham D., Wiles M.A. The effect of implementing chatbot customer service on stock returns: an event study analysis // J. Acad. Mark. Sci. 2023. V. 51. P. 802–822. https://doi.org/10.1007/S11747-022-00841-2/TABLES/6
- 33. Ciechanowski L., Przegalinska A., Magnuski M., et. al. In the shades of the uncanny valley: An experimental study of human-chatbot interaction // Futur. Generat. Comput. Syst. 2019. V. 92. P. 539–548. https://doi.org/10.1016/J.FUTURE.2018.01.055
- 34. Thakkar J., Raut P., Doshi Y., et. al. Erasmus AI Chatbot // Int. J. Comput. Sci. Eng. 2018. V. 6. P. 498–502. https://doi.org/10.26438/IJCSE/V6I10.498502
- 35. Sidaoui K., Jaakkola M., Burton J. AI feel you: customer experience assessment via chatbot interviews // J. Servic. Management. 2020. V. 31. P. 745–766. https://doi.org/10.1108/JOSM-11-2019-0341/FULL/PDF
- 36. Zhou L., Paul S., Demirkan H., et. al. Intelligence Augmentation: Towards Building Human-Machine Symbiotic Relationship // AIS Transactions on Human-Computer Interaction. 2021. V. 13. P. 243–264. https://doi.org/10.17705/1thci.00149
- 37. Gkinko L., Elbanna A. The appropriation of conversational AI in the workplace: A taxonomy of AI chatbot users // Int. J. Inf. Management. 2023. V. 69. 102568 p. https://doi.org/10.1016/J.IJINFOMGT.2022.102568
- 38. Rizomyliotis I., Kastanakis M.N., Giovanis A., et. al. “How mAy I help you today?” The use of AI chatbots in small family businesses and the moderating role of customer affective commitment // J. Bus. Res. 2022. V. 153. P. 329–340. https://doi.org/10.1016/J.JBUSRES.2022.08.035
- 39. Chen Q., Gong Y., Lu Y., et. al. Classifying and measuring the service quality of AI chatbot in frontline service // J. Bus. Res. 2022. V. 145. P. 552–568. https://doi.org/10.1016/J.JBUSRES.2022.02.088
- 40. Tam W., Huynh T., Tang A., et. al. Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? // Nurse Educ. Today. 2023. V. 129. 105917 p. https://doi.org/10.1016/J.NEDT.2023.105917
- 41. Zhu Y., Zhang J., Wu J., et. al. AI is better when I’m sure: The influence of certainty of needs on consumers’ acceptance of AI chatbots // J. Bus. Res. 2022. V. 150. P. 642–652. https://doi.org/10.1016/J.JBUSRES.2022.06.044
- 42. Ruan Y., Mezei J. When do AI chatbots lead to higher customer satisfaction than human frontline employees in online shopping assistance? Considering product attribute type // J. Retailing Consum. Ser. 2022. V. 68. 103059 p. https://doi.org/10.1016/J.JRETCONSER.2022.103059
- 43. Janssen A., Rodr´ıguez Cardona D., Passlick J., et. al. How to Make chatbots productive – A user-oriented implementation framework // Int. J. Hum. Comput. Stud. 2022. V. 168. 102921 p. https://doi.org/10.1016/J.IJHCS.2022.102921
- 44. Lee D., Yeo S. Developing an AI-based chatbot for practicing responsive teaching in mathematics // Comput. Educ. 2022. V. 191. 104646 p. https://doi.org/10.1016/J.COMPEDU.2022.104646
- 45. Liu C.C., Liao M.G., Chang C.H., et. al. An analysis of children’s interaction with an AI chatbot and its impact on their interest in reading // Comput. Educ. 2022. V. 189. 104576 p. https://doi.org/10.1016/J.COMPEDU.2022.104576
- 46. Johnson C., Urazov M., Zanoli E. Escapeling: A Gamified, AI-Supported Chatbot for Collaborative Language Practice // Lecture Notes in Networks and Systems. 2022. V. 349. P. 141–148. https://doi.org/10.1007/978-3-030-90677-1_14/COVER
- 47. Варнавский А.Н. Сравнение показателей восприятия игрового чат-бота с заданиями-головоломками для обучения программированию с показателями восприятия других образовательных инструментов // Информатика и образование. 2024. T. 39. № 4. С. 41–50. https://doi.org/10.32517/0234-0453-2024-39-4-41-50
- 48. Варнавский А.Н. Использование игрового чат-бота для развития навыков алгоритмического и логического мышления // Информатика и образование. 2024. Т. 39. № 2. С. 48–58. https://doi.org/10.32517/0234-0453-2024-39-2-48-58
- 49. Варнавский А.Н. Модели интереса, сложности и воспринимаемой полезности игрового чат-бота c головоломками по типу Wordle для обучения программированию // Информационные технологии. 2024. Т. 30. № 7. С. 372–381. https://doi.org/10.17587/it.30.372-381