Рассматривается метод дивергентного решающего леса, основанный на достижении более высокой дивергенции в пространстве прогнозов по сравнению со стандартным случайным решающим лесом за счет включения на каждом шаге в ансамбль нового дерева Tx, которое строится исходя из условий минимизации специального функционала, являющегося разностью квадратичной ошибки Tx и квадрата расхождения прогнозов Tx и текущего ансамбля. Метод является развитием аналогичных ранее разработанных методов, которые предназначены для прогнозирования числовых переменных. Вработе представлены результаты применения метода дивергентного решающего леса для решения задач классификации, возникающих при создании рекомендательных систем. Исследована зависимость эффективности прогноза от глубины деревьев и одного из ключевых параметров алгоритма, регулирующего вклад двух составляющих в минимизируемый функционал. Исследования показали, что точность предлагаемой технологии заметно превышает точность случайного решающего леса и близка к точности метода CatBoost.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation