Трудность интерпретации результатов работы нейронных сетей явля- ется насущной проблемой, решению которой уделяется много внимания. Нейронные сети, основанные на решетках понятий, представляют собой перспективное направление в данной области. Отбор понятий для по- строения нейронной сети ключевым образом влияет на качество ее рабо- ты. Средством отбора понятий могут являться индексы интересности, ко- гда для построения нейронной сети используются понятия с наибольшими показателями определенного индекса. В статье исследуется влияние вы- бора индекса интересности как средства отбора формальных понятий на качество работы нейронной сети.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации