Рассматриваются детерминированные непрерывные конечномерные стационарные линейные динамические системы управления с многими входами и многими выходами. Предполагается, что матрица динамики может быть как устойчивая, так и неустойчивая, но ее собственные числа различны, не принадлежат мнимой оси и не являются зеркальным отображением друг друга относительно нуля плоскости собственных чисел. В рамках единой постановки рассмотрены задачи построения спектральных решений уравнений состояния и матриц грамианов управляемости этих систем, а также связанных с ними энергетических функционалов степени устойчивости и достижимости с целью оптимального размещения датчиков и исполнительных механизмов многосвязных систем управления и сложных сетей. Для решения перечисленных задач в статье использованы различные модели системы в пространстве состояний: общее представление, а также представление в различных канонических формах. Для вычисления спектральных разложений грамианов управляемости использованы псевдоганкелевые матрицы (матрицы Сяо). Предложены новые методы и разработаны алгоритмы вычисления грамианов управляемости и энергетических метрик линейных систем. Результаты исследований могут найти применение для оптимального размещения датчиков и исполнительных механизмов многосвязных систем управления, управления с минимальной энергией в сложных сетях различной природы.
Для линейных многосвязных непрерывных стационарных устойчивых систем с простым спектром, в том числе в канонической диагональной форме, а также приведенных к каноническим формам управляемости и наблюдаемости, разработан метод и получены аналитические формулы спектральных разложений грамианов в форме различных матриц Сяо. Разработан метод и алгоритм вычисления обобщенных матриц Сяо в виде произведения Адамара для многосвязных непрерывных линейных систем со многими входами и многими выходами. Это позволяет вычислять элементы соответствующих грамианов управляемости и наблюдаемости в виде произведений соответствующих элементов матриц мультипликаторов и матрицы, являющейся суммой всевозможных произведений матриц числителя матричной передаточной функции системы. Новые результаты получены в виде спектральных и сингулярных разложений обратных грамианов управляемости и наблюдаемости. Это позволяет получить инвариантные разложения энергетических функционалов и сформулировать новые критерии устойчивости линейных систем с учетом нелинейных эффектов взаимодействия мод.
Для билинейных многосвязных непрерывных стационарных устойчивых систем с простым спектром разработаны методы и алгоритмы получения аналитических формул спектральных разложений грамианов. Найдена гарантированная ограниченная область распространения методов решения и анализа линейных систем управления на класс билинейных систем. Разработаны новые достаточные условия BIBO устойчивости билинейных систем. Полученные спектральные разложения решений по спектру матрицы динамики линейной части, а также спектру и вычетам изображений воздействий позволяют оценить их влияние на устойчивость и динамические характеристики билинейной системы.
Разработаны новые алгоритмы поэлементного вычисления матриц прямых и обратных грамианов для устойчивых непрерывных линейных MIMO LTI систем на основе спектральных разложений грамианов в форме произведений Адамара. Показано, что матрицы мультипликаторов в произведении Адамара являются инвариантами при различных канонических преобразованиях линейных непрерывных систем. Получены также спектральные разложения обратных матриц грамианов непрерывных динамических систем по спектрам самих матриц грамианов и исходных матриц динамики. Исследованы свойства матриц мультипликаторов в спектральных разложениях грамианов. С помощью этих результатов получены спектральные разложения следующих энергетических метрик: объемов эллипсоидов притяжения, следов матрицы прямого и обратного грамианов управляемости, входной и выходной энергии системы индексов центральности энергетических метрик управляемости, средней минимальной энергии. Даны рекомендации по использованию полученных результатов.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation