Статья посвящена применению принципов (правил) правдоподобных рассуждений к символьному машинному обучению (МО). Эти применения существенны и необходимы для увеличения эффективности алгоритмов МО. Множество таких алгоритмов порождают и используют правила в форме импликаций. Обсуждается генерация этих правил по отношению к классам объектов. Эти классификационные правила специфичны. Их посылки, называемые хорошими замкнутыми тестами (ХЗТ), покрывают максимально возможное множество объектов. Представлен один из алгоритмов генерации ХЗТ, называемый NIAGARA. Алгоритм пересмотрен и предложены новые процедуры на основе правдоподобных рассуждений. Их корректность доказывается. Используются следующие правила: импликации, запреты, индуктивные правила расширения текущих множеств целевых объектов, правила сокращения области поиска решений. Они позволяют увеличить эффективность алгоритма.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation