RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Postroenie effektivnykh investitsionnykh portfeley s veroyatnost'yu padeniya final'nogo kapitala investora nizhe ustanovlennogo urovnya v kachestve mery riska

PII
10.31857/S0005231023040086-1
DOI
10.31857/S0005231023040086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
131-144
Abstract
The paper presents a constructive description of the set of all efficient (Pareto-optimal) investment portfolios in a new setting, where the risk measure named “shortfall probability” (SP) is understood as the probability of a shortfall of investor’s capital below a prescribed level. Under a normality assumption, it is shown that SP has a generalized convexity property, the set efficient portfolios is constructed. Relations between the set of mean-SP and the set of mean-variance efficient portfolios as well as between mean-SP and mean-Value-at-Risk (VaR) sets of efficient portfolios are studied. It turns out that mean-SP efficient set is a proper subset of the mean-variance efficient set; interrelation with the mean-VaR efficient set is more complicated, however, mean-SP efficient set is proved to be a proper subset of mean-VaR efficient set under a sufficiently high confidence level. Besides a normal distribution, elliptic distributions are considered as an alternative for modeling the investor’s total return distribution. The obtained results provides the investor with a risk measure, that is more vivid than the variance and Value-at-Risk, and with determination of the corresponding set of effective portfolios.
Keywords
risk analysis portfolio optimization value at risk shortfall probability
Date of publication
15.04.2023
Year of publication
2023
Number of purchasers
0
Views
9

References

  1. 1. Markowitz H. Portfolio Selection // J. Finance. 1952. V. 7. P. 77-91.
  2. 2. Gaivoronski A., d Pflug G. Value at Risk in Portfolio Optimization: Properties and Computational Approach // J. Risk. 2004. V. 7. No. 2. P. 1-31.
  3. 3. Shiba N., Xu C., Wang J. Multistage Portfolio Optimization with VaR as Risk Measure // Int. J. Innovat.Comput., Inform. Control. 2007. V. 3. No. 3. P. 709-724.
  4. 4. Rockafellar R.T., Uryasev S. Conditional value-at-risk for general loss distributions // J. Bank. Finance. 2002. V. 26. P. 1443-1471.
  5. 5. Szego G. Measure of Risk // Eur. Oper. Res. 2005. V. 163. P. 5-19.
  6. 6. Rockafellar R.T., Uryasev S., Zabarankin M. Generalized Deviations in Risk Analysis // Finance Stochast. 2006. V. 10. No. 1. P. 51-74.
  7. 7. Artzner P., Delbaen F., Eber J.M., Heath D. Coherent measures of risk // Math. Finance. 1999. No. 9. P. 203-228.
  8. 8. Минасян В.Б. Новые меры риска искажения высших моментов распределения потерь. Взаимосвязь с мерами катастрофических рисков // Управление финансовыми рисками. 2021. Т. 68. № 4. С. 302-323.
  9. 9. Gardoni P., Murphy C. Gauging the societal impacts of natural disasters using a capabilities-based approach // Disasters: Disaster Studies, Policy, Management. 2010. V. 34. No. 3. P. 619-636.
  10. 10. Gardoni P., Murphy C. Design, risk and capabilities. In Human Capabilities, Technology, and Design, J. van den Hoven and I. Oosterlaken (Eds.). N.Y.: Springer, 2012. P. 173-188.
  11. 11. Rockafellar R.T., Royset J.O. Risk Measures in Engineering Design under Uncertainty // International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP). N.Y., USA, 2015. P. 1-9.
  12. 12. Pinar M.C. Static and Dynamic VaR Constrained Portfolios with Application to Delegated Portfolio Management // Optimization. 2013. V. 62. No. 11. P. 1419-1432.
  13. 13. Duffie D., Pan J. An Overview of Value at Risk // Derivat. 1997. V. 4. P. 7-49.
  14. 14. Golubin A.Y. Optimal Investment Policy in a Multi-stage Problem with Bankruptcy and Stage-by-stage Probability Constraints // Optimization. 2021. https://doi.org/10.1080/02331934.2021.1892674
  15. 15. Кибзун А.И., Кан Ю.С. Задачи стохастического программирования с вероятностными критериями. М.: Физматлит, 2009.
  16. 16. Alexander G.J., Baptista A.M. Economic Implications of Using a Mean-VaR Model for Portfolio Selection: A Comparison with Mean-variance Analysis // J. Econom. Dynam. Control. 2002. V. 26. P. 1159-1193.
  17. 17. Guo X., Chan R.H., Wong W.K., Zhu L. Mean-variance, Mean-VaR, and Mean-CVaR Models for Portfolio Selection with Background Risk // Risk Manag. 2019. V. 21. P. 73-98.
  18. 18. Bazara M.S., Shetty C.M. Nonlinear Programming: Theory and Algorithms, New York: Wiley, 1979.
  19. 19. Merton R.C. An analytic derivation of the efficient portfolio frontier // J. Finan. Quantit. Anal. 1972. No. 7. P. 1851-1872.
  20. 20. Hull J.C., White A. Value-at-risk when daily changes in market variables are not normally distributed // J. Derivat. 1998. No. 5. P. 9-19.
  21. 21. Landsman Z., Valdez E.A. Tail Conditional Expectations for Elliptical Distributions // North Amer. Actuarial J. 2003. V. 7. No. 4. P. 55-71.
  22. 22. Alexander G.J., Baptista A.M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model //Management Sci. 2004. V. 50. P. 1261-1273.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library