- PII
- 10.31857/S0005231023100069-1
- DOI
- 10.31857/S0005231023100069
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 10
- Pages
- 59-71
- Abstract
- This paper provides a parametrization of optimal anisotropic controllers for linear discrete time invariant systems. The controllers to be designed are limited by causal dynamic output-feedback control laws. The obtained solution depends on several adjustable parameters that determine the specific type of controller, and is of the form of a system of the Riccati equations relating to a -optimal controller for a system formed by a series connection of the original system and the worst-case generating filter corresponding to the maximum value of the mean anisotropy of the external disturbance.
- Keywords
- линейные дискретные системы анизотропийная теория оптимальное управление параметризация
- Date of publication
- 15.10.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 11
References
- 1. Basile G., Marro G. Controlled and conditioned invariant subspaces in linear system theory // J. Optim. Theory Appl. 1969. Vol. 3. P. 306-315. https://doi.org/10.1007/BF0093137010.1007/BF00931370
- 2. Chen B.M., Saberi A., Shamash Y. Necessary and sufficient conditions under which a discrete time H2-optimal control problem has a unique solution // Proc. 32nd IEEE Conf. Decision and Control. 1993. Vol. 1. P. 805-810. https://doi.org/10.1109/CDC.1993.325038
- 3. Chen B.M., Saberi A., Shamash Y., Sannuti P. Construction and parameterisation of all static and dynamic H2-optimal state feedback solutions for discrete time systems // Proc. 32nd IEEE Conf. Decision and Control. 1993. Vol. 1. P. 126-131. https://doi.org/10.1109/CDC.1993.325177
- 4. Diamond P., Kloeden P., Vladimirov I. Mean anisotropy of homogeneous Gaussian random fields and anisotropic norms of linear translation-invariant operators on multidimensional integer lattices // J. Appl. Math. Stochast. Anal. 2003. Vol. 16:3. P. 209-231. https://doi.org/10.1155/S1048953303000169
- 5. Doyle J.C., Glover K., Khargonekar P.P., Francis B.A. State-space solutions to standard H2 and H∞ control problems // IEEE Transactions on Automatic Control. 1989. Vol. 34. P. 831-847. https://doi.org/10.1109/9.29425
- 6. Saberi A., Sannuti P., Stoorvogel A.A. H2 optimal controllers with measurement feedback for continuous-time systems: flexibility in closed-loop pole placement // Automatica. 1997. Vol. 33. No. 3. P. 289-304. https://doi.org/10.1016/S0005-1098 (96)00195-1
- 7. Schumacher J.M. Dynamic feedback in finite- and infinite-dimensional linear systems. Mathematisch Centrum. 1981. ISBN: 9061962293.
- 8. Stoorvogel A.A. The H∞ control problem: a state space approach. Phd Thesis, Mathematics and Computer Science. Technische Universiteit Eindhoven. 1981. 229 P. https://doi.org/10.6100/IR338287
- 9. Stoorvogel A.A. The singular H2 control problem // Automatica. 1992. Vol. 28. No. 3. P. 627-631. https://doi.org/10.1016/0005-1098 (92)90189-M
- 10. Trentelman H.L., Stoorvogel A.A. Sampled-data and discrete-time H2 optimal control // Proc. 32nd IEEE Conf. Decision and Control. 1993. Vol. 1. P. 331-336. https://doi.org/10.1109/CDC.1993.325136
- 11. Trentelman H.L., Stoorvogel A.A. Sampled-data and discrete-time H2 optimal control // SIAM J. Control and Optimization. 1995. Vol. 33. No. 3. P. 834-862. https://doi.org/10.1137/S0363012992241995
- 12. Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. On computing the anisotropic norm of linear discrete-time-invariant systems // IFAC Proceedings Volumes. 1996. Vol. 29. Is. 1. P. 3057-3062. https://doi.org/10.1016/S1474-6670 (17)58144-6
- 13. Vladimirov I.G., Kurdyukov A.P., Semyonov A.V. State-space solution to anisotropy- based stochastic H∞-optimization problem // IFAC Proceedings Volumes. 1996. Vol. 29. Is. 1. P. 3816-3821.