RAS Energy, Mechanics & ControlАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

Structural Spectral Methods for Solving Continuous Lyapunov Equations

PII
10.31857/S0005231023120036-1
DOI
10.31857/S0005231023120036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 12
Pages
18-37
Abstract
For linear multivariable continuous stationary stable control systems with a simple spectrum, presented in the form of a canonical diagonal form, controllability and observability forms, a method was developed and analytical formulas for spectral decompositions of gramians in the form of various Xiao matrices were obtained. A method and algorithm for calculatin generalized Xiao matrices in the form of the Hadamard product for multiply connected continuous linear systems with many inputs and many outputs have been developed. This allows us to calculate the elements of the corresponding controllability and observability gramians in the form of products of the corresponding elements of the multiplier matrices and a matrix that is the sum of all possible products of the numerator matrices of the matrix transfer function of the system. New results are obtained in the form of spectral and singular decompositions of the inverse gramians of controllability and observability. This makes it possible to obtain invariant decompositions of energy functionals and formulate new criteria for the stability of linear systems taking into account the nonlinear effects of mode interaction.
Keywords
спектральные разложения грамианов сингулярные числа обратная матрица грамиана устойчивость с учетом взаимодействия мод матрицы Сяо уравнение Ляпунова
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
44

References

  1. 1. Antoulas A.C. Approximation of Large-Scale Dynamical Systems. SIAM. Philadephia, 2005.
  2. 2. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Теория автоматического управления. Учеб. пособие. М.: ЛЕНАНД, 2019. 504 с.
  3. 3. Зубов Н.Е., Зыбин Е.Ю., Микрин Е.А., Мисриханов М.Ш., Рябченко В.Н. Общие аналитические формы решения уравнений Сильвестра и Ляпунова для непрерывных и дискретных динамических систем // Известия РАН. Теория и системы управления. 2017. № 1. С. 3-20.
  4. 4. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1966.
  5. 5. Икрамов Х.Д. Численное решение матричных уравнений. М.: Наука, 1984. 192 с.
  6. 6. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. Учебник-М: Изд-во Лань, 2009. 726 с.
  7. 7. Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.
  8. 8. Андреев Ю.Н. Управление конечномерными линейными объектами М.: Наука, 1976. 424 c.
  9. 9. Годунов С.К. Лекции по современным аспектам линейной алгебры. Новосибирск: Научная книга, 2002. 216 с.
  10. 10. Проскурников А.В., Фрадков А.Л. Задачи и методы сетевого управления // АиТ. 2016. № 10. С. 3-39.
  11. 11. Жабко А.П., Харитонов В.Л. Методы линейной алгебры в задачах управления: учебное пособие / СПбГУ СПб.: Изд-во СПб. универ-та, 1993. 318 с.
  12. 12. Sreeram V., Agathoklis P. Solution of Lyapunov equation with system matrix in companion form // IEE Proc. D. Control. Theory Appl. 1991. V. 138. No. 6. P. 529-534. https://doi.org/10.1049/ip-d.1991.0074
  13. 13. Xiao C., Feng Z., Shan X. On the Solution of the Continuous-Time Lyapunov Matrix Equation in Two Canonical Forms // IEE Proc. 1992. V. 139. No. 3. P. 286-290. https://doi.org/10.1049/ip-d.1992.0038
  14. 14. Hauksdottir A., Sigurdsson S. The continuous closed form controllability Gramian and its inverse // 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009. P. 5345-5351. https://doi.org/978-1-4244-4524-0/09
  15. 15. Yadykin I.B. Spectral Decompositions of Gramians of Continuous Stationary Systems Given by Equations of State in Canonical Forms // Mathematics. 2022. V. 10. No. 13. P. 2339. https://doi.org/10.3390/math10132339
  16. 16. Dilip A.S.A. The controllability Gramian, the Hadamard product and the optimal actuator // Leader Sensor Select. Problem Nature Phys. 2015. V. 11. P. 779-786. https://doi.org/10.1109/LCSYS.2019.2919278
  17. 17. Bianchin G., Pasqualetti F. Gramian-Based Optimization for the Analysis and Control of Traffic Networks // IEEE Transactions on Intelligent Transportation Systems. 2022. V. 21. No. 7. P. 3013-3024. https://doi.org/10.1109/TITS.2019.2922900
  18. 18. Himpe C. The Empirical Gramian Framework // Algorithms. 2018. V. 11. No. 91. https://doi.org/10.3390/a11070091
  19. 19. Benner P., Goyal P., Duff I.P. Gramians, Energy Functionals, and Balanced Truncation for Linear Dynamical Systems With Quadratic Outputs // IEEE Transact. Autom. Control. 2022. V. 67. No. 2. P. 886-893. https://doi.org/10.1109/TAC.2021.3086319
  20. 20. Ядыкин И.Б. О свойствах грамианов непрерывных систем управления // АиТ. 2010. № 6. С. 39-50. https://doi.org/10.1134/S0005117910060032
  21. 21. Yadykin I.B., Galyaev A.A. On the methods for calculation of grammians and their use in analysis of linear dynamic systems // Automation and Remote Control. 2013. V. 74. No. 2. P. 207-224.
  22. 22. Ядыкин И.Б., Искаков А.Б. Энергетический подход к анализу устойчивости линейных стационарных динамических систем // АиТ. 2016. № 12. С. 37-58.
  23. 23. Gardner M.F., Barns J.L. Transients in linear systems studied by the Laplace transformation / V. 1. Lumped-constant systems. New York, London. Wiley, Chapman and Hall. 1942.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library