ОЭММПУАвтоматика и телемеханика Automation and Remote Control

  • ISSN (Print) 0005-2310
  • ISSN (Online) 2413-9777

СТАБИЛИЗАЦИЯ ПО ВЫХОДУ НЕЛИНЕЙНОЙ СИСТЕМЫ ТИПА ЛУРЬЕ В ЗАДАННОМ МНОЖЕСТВЕ

Код статьи
10.31857/S0005231024010034-1
DOI
10.31857/S0005231024010034
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 1
Страницы
47-63
Аннотация
Рассмотрена задача стабилизации выходных переменных нелинейной системы типа Лурье в заданном множестве в любой момент времени. Для решения задачи использовалось специальное преобразование выхода, позволяющее свести исходную задачу с ограничениям по выходу к задаче без ограничений по вспомогательной переменной. Для новой системы получены нелинейные законы управления с использованием техники линейных матричных неравенств (ЛМН). Приведены примеры, иллюстрирующие эффективность предложенного метода и подтверждающие теоретические выводы.
Ключевые слова
нелинейная система типа Лурье стабилизация нелинейное управление замена координат устойчивость линейные матричные неравенства
Дата публикации
15.01.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Григорьев В.В., Журавлева Н.В., Лукьянова Г.В., Сергеев К.А. Синтез систем методом модального управления. СПб.: СПб ГУ ИТМО, 2007.
  2. 2. Ioannou P.A., Sun J. Robust Adaptive Control. Courier Corporation, 2012.
  3. 3. Narendra K.S., Annaswamy A.M. Stable Adaptive Systems. Courier Corporation, 2012.
  4. 4. Фуртат И.Б., Гущин П.А. Управление динамическими объектами с гарантией нахождения регулируемого сигнала в заданном множестве // АиТ. 2021. № 4. С. 121–139.
  5. 5. Furtat I., Gushchin P. Nonlinear feedback control providing plant output in given set // Int. J. Control. 2022. V. 95. No. 6. P. 1533–1542. https://doi.org/10.1080/00207179.2020.1861336
  6. 6. Нгуен Б.Х., Фуртат И.Б., Нгуен К.К. Управление линейными объектами на базе наблюдателей с гарантией нахождения регулируемой переменной в заданном множестве // Дифференц. уравн. и процессы управления. 2022. № 4. С. 95–104.
  7. 7. Furtat I., Nekhoroshikh A., Gushchin P. Synchronization of multimachine power systems under disturbances and measurement errors // Int. J. Adaptiv. Control Signal Proc. 2022. in press. https://doi.org/10.1002/acs.3372
  8. 8. Павлов Г.М., Меркурьев Г.В. Автоматика энергосистем / Центр подготовки кадров РАО “ЕЭС России”. СПб.: Папирус, 2001.
  9. 9. Веревкин А.П., Кирюшин О.В. Управление системой поддержания пластового давления с использованием моделей конечно-автоматного вида // Территория Нефтегаз. 2008. № 10. С. 14–19.
  10. 10. Мирошник И.В., Никифоров В.О., Фрадков А.Л. Нелинейное и адаптивное управление сложными динамическими системами СПб.: Наука, 2000.
  11. 11. Isidori A. Nonlinear Control Systems. Springer, 1995.
  12. 12. Khalil H.K. Nonlinear Systems. 3rd edition. Pearson. 2001.
  13. 13. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях: техника линейных матричных неравенств М.: Ленанд, 2014.
  14. 14. Sturm J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones // Optim. Method. Softwar. 1999. V. 11. No. 1. P. 625–653. https://doi.org/10.1080/10556789908805766
  15. 15. Toh K.C., Todd M.J., Tutuncu R.H. SDPT3-a MATLAB software package for semidefinite programming, version 1.3. // Optim. Method. Softwar. 1999. V. 11. P. 545–581. https://doi.org/10.1080/10556789908805762
  16. 16. Borchers B. A C library for semidefinite programming // Optim. Method. Softwar. 1999. V. 11. P. 613–623.
  17. 17. Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB // Proc. of the IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508). 2004. P. 284–289. https://doi.org/10.1109/CACSD.2004.1393890
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека